TILAPIA Hatchery and Grow-out

Is TILAPIA farming profitable?

<table>
<thead>
<tr>
<th>Costs-and-returns</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total variable cost per cropping (PhP)</td>
<td>2,742,000</td>
</tr>
<tr>
<td>Total fixed cost per cropping (PhP)</td>
<td>531,813</td>
</tr>
<tr>
<td>Net income per year (PhP)</td>
<td>335,562</td>
</tr>
<tr>
<td>Internal rate of return (%)</td>
<td>108</td>
</tr>
<tr>
<td>Return-on-investment (%)</td>
<td>129</td>
</tr>
<tr>
<td>Payback period (years)</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Technical information for a 5-hectare tilapia grow-out pond

- Project duration (years): 5
- Area (ha): 5
- Stocking density (per m²): 7
- Total stocks per crop: 350,000
- Croppings per year: 2
- Average weight at harvest (kg): 0.250
- Feed conversion ratio: 1.8
- Survival rate (%): 75
- Recovery at harvest (pieces): 262,500
- Total weight at harvest (kg): 65,625
- Farm gate price (PhP/kg): 55
- Gross sales (PhP): 3,609,375

Need ASSISTANCE?

Get a copy of our manuals!

AEM 22 Pag-aalaga ng Tilapya RV Eguia, MRR Eguia (2007)
A 55-page manual detailing the culture and grow-out of tilapia until its harvest. This manual also includes a list of government agencies in the Philippines involved in tilapia research and development.

AEM 23 Pagpapaanak ng Tilapya RV Eguia, MRR Eguia (2007)
A 52-page revised edition of the 1996 manual, discusses the spawning of tilapia in concrete tank hatcheries, hapa hatcheries in ponds and lakes and the hatchery operations of tilapia.

AEM 36 Tilapia Farming in Cages and Ponds RV Eguia, MRR Eguia (2004)
A 40-page manual describes the farming practices for tilapia in cages, pens, ponds, and tanks. Also details selection of quality seedstock, maintenance of stock (feeding, water management), and harvesting. A list of institutions working on tilapia R&D is included.

AEM 51 Modyular na pag-aalaga ng tilapya sa mga kulungang lambat R Eguia, MRR Eguia, ND Salayo (2011) An extension manual detailing traditional cage culture method, concept of modular cage culture, economic feasibility of modular cage culture, and post harvest processing.

Check out our online bookstore for more titles:
www.seafdec.org.ph/bookstore

Attend our hands-on training!

Tilapia Hatchery and Grow-out Operations training course at AQD’s Binangonan Freshwater Station. To apply, kindly contact:

Training and Information Division
(63-33) 330 7030
training@seafdec.org.ph/bfs@seafdec.org.ph
Check out our training schedule:
www.seafdec.org.ph/training

Talk to us!

SEAFDEC Aquaculture Department
5021 Tigosan, Boilo, Philippines
Tel: (63-33) 330 7000; 511 9170
aqdchief@seafdec.org.ph
www.seafdec.org.ph

© September 2016
Why TILAPIA?

Tilapia is known as the “aquatic chicken.” It has become a global staple fish and protein source because it grows fast and breeds easily in captivity. An easy fish to culture, it is tolerant to a wide range of salinity and temperature levels. Moreover, farming tilapia requires minimal inputs.

How to breed and culture TILAPIA?

Hatchery in netcages
- Install 3 x 10 x 0.75 m fine-meshed netcages in ponds or 3 x 10 x 1.5 m fine-meshed netcages in lakes
- Stock four (3 females and 1 male) or five (4 females and 1 male) tilapia breeders (3-4 month old, minimum 100 g) per square meter
- Feed breeders at 3% of total biomass with tilapia feeds containing 40% protein
- Check for the presence of fry three weeks after stocking the breeders
- Collect fry and transfer to nursery netcages
- Place breeders in separate holding facilities and continue feeding them high-protein tilapia feeds for the next breeding cycle

Grow-out in ponds
- Stock 1-2 fingerlings/m² for extensive systems, 3-4 fingerlings/m² for semi-intensive systems, and 5-10 fingerlings/m² for intensive systems
- Feed fingerlings with tilapia feeds daily at 2-3% of the total fish biomass in semi-intensive systems and at 3-5% of the total fish biomass in intensive systems
- Intensive systems require good water management (water change as needed) apart from additional provisions like paddlewheel aerators
- Harvest fish when they reach the market size of 150-300 g (4-6 months)

Is TILAPIA seed production profitable?

Technical information for a small-scale netcage-based hatchery

No. of broodstock (F=1,600; M=400)	2,000
Female broodstock that produces fry per cycle (%)	80
Fry production per female broodstock (pcs)	200
Production per cycle (pcs)	256,000
Number of cycles per month, 36 days	2
Productive months per year	10
Production per month (pcs)	358,400
Recovery after one month (%)	70
Production per year (pcs)	3,584,000
Farm gate fry selling price, size 22 (PhP/pc)	0.45
Gross sales	1,612,800

Costs-and-returns (per year)

Total variable cost (PhP)	436,000
Total fixed cost (PhP)	450,000
Net income per year (PhP)	766,800
Internal rate of return (%)	146
Return-on-investment (%)	163
Payback period (years)	0.48

Female broodstock (Oreochromis niloticus) with eggs in its mouth

A fixed cage module

A fixed cage module

Female broodstock (Oreochromis niloticus) with eggs in its mouth