Milkfish Breeding and Hatchery Technology at SEAFDEC/AQD

AQUACULTURE DEPARTMENT
Southeast Asian Fisheries Development Center
Tigbauan, Iloilo
In support of a sustainable milkfish aquaculture, research on captive breeding and mass fry production were undertaken for the past two decades at SEAFDEC/AQD. These technologies, now being adopted by the private sector, include:

BROODSTOCK MANAGEMENT

Although a scientific breakthrough in 1977, the induced spawning of wild-caught sabalo (adult milkfish) had a low success rate and leads to mortalities. Thus, milkfish were reared to adults in floating net cages (10 m diameter by 3 m deep) and concrete tanks (10 x 10 x 2 m or 10 x 25 x 2 m deep) supplied with flow-through filtered seawater. Sexual maturation began as the broodstock reached 5 years of age (body weight 3 kgs and above). Since then, natural spawning has been observed annually in floating net cages.

Eggs are immediately collected to prevent cannibalism by the broodstock using a manually operated sweeper-type egg collector. Fine mesh knots attached to an airlift system made of 4” diameter PVC pipe collect the eggs in concrete tanks. Egg production of up to 2.5 million/female/season has been attained. Viable eggs are about 80% per spawning, of which 80% hatch. Normal hatchings (straight and without deformities) are usually 80% per spawn.

BROODSTOCK DIET

A diet formulated by SEAFDEC/AQD to support sexual maturation and production of high quality eggs of milkfish is used to feed the broodstock. The diet contains 36% protein (from imported animal and terrestrial proteins), 6% lipid and vitamin mix.
COMMERCIAL FRY PRODUCTION

The water and feeding management schemes for milkfish larviculture have been developed to ensure mass fry production. Hatchery operations utilize either an intensive (high stocking density, high volume tanks, daily feeding and water change) or a semi-intensive (low stocking density, high volume tanks, minimal water change, feeding with mixed diet) system, with an average survival rate of 30% (from stocked newly-hatched larvae). The technology has been used by the private sector to utilize abandoned shrimp hatcheries.

LIVE TRANSPORT

A technique that combines utilizing pre-transport starvation anesthetic at capture, chilled transport water, and a sedating dose of anesthesia effectively transports live broodstock. It was tried on 4-13 year old broodstock placed in oxygenated transport plastic bags (2 m long x 0.5 m wide) containing 40-l chilled (20-22°C) seawater and 5 ml 2-phenoxyethanol (anesthetic). The transport bags were then placed in styrofoam boxes. Travel time was 6-7 hours, recovery was fast, and no mortality was recorded. Eggs (embryonic stage) and newly-hatched larvae were also transported in oxygenated plastic bags containing 12-l seawater and supported by straw bags. Optimum density, temperature, and salinity was 100,000-120,000 eggs or larvae per bag, 28-30°C and 32-34 ppt.

LARVAL DIET

To minimize the use of mass-cultured rotifers, a formulated larval diet containing adequate nutrition (highly unsaturated fatty acids and vitamin mix) was found to be an effective supplement for rotifers and alternative for the expensive brine shrimp (Artemia) nauplii for milkfish larviculture.
PARTIAL LIST OF SEAFDEC/AQD
RESEARCH PUBLICATIONS ON MILKFISH

Agbayani RF, Baliao DD, Franco NM, Ticar RB, Guanzon NG Jr. 1989. An
economic analysis of the modular pond system of milkfish production
in the Philippines. AQUACULTURE 83: 249-259

Agbayani RF, Lopez NA, Tumaliuan RE, Berjamin GD. 1991 Economic
analysis of an integral milkfish broodstock and hatchery operation
as a public enterprise. AQUACULTURE 99: 235-248

Alava VR. 1998. Effect of salinity, dietary lipid source and level of
growth of milkfish (Chanos chanos) fry. AQUACULTURE 167: 229-236

Alava VR, Kanazawa A. 1996. Effect of dietary fatty acid on growth of
milkfish Chanos chanos fry in brackishwater. AQUACULTURE 144 (4):
363-369

Almendras JME. 1987. Acute nitrite toxicity and methemoglobinemia in juvenile
milkfish (Chanos chanos Forskal). AQUACULTURE 61 (1): 33-40

Bagarinao T. 1994. Systematics, distribution, genetics and life history of
milkfish, Chanos chanos. ENVIRON. BIOL. FISHES 39 (1) 23-41

Bagarinao T. 1986. Yolk resorption, onset of feeding and survival potential of larvae of three tropical marine
fish species reared in the hatchery. MAR. BIOL. (91):449-459

Bagarinao TU, Kumagai S. 1981. Studies on the habitat and food of juvenile milkfish in the wild. FISH. RES.
J. PHILIPP. 6 (1): 1-10

Bautista MN, de la Cruz MC. 1988. Linoleic (omega 6) and linolenic
(omega 3) acids in the diet of fingerling milkfish (Chanos chanos Forskal).
AQUACULTURE 71 (4): 347-358

Bautista MN, del Valle MJ, Orejana FM. 1991. Lipid and fatty acid composition of brackishwater and fresh-
water-reared milkfish (Chanos chanos Forsskal). AQUACULTURE. 96 (3-4):
241-248

Benitez LV, Tiro LB. 1982. Studies on the digestive proteases of the milkfish Chanos chanos. MAR. BIOL. 71
(3): 309-315

Borlongan IG. 1992. The essential fatty acid requirement of milkfish (Chanos chanos Forsskal). FISH PHYSIO.
BIOCHEM. 9 (5-6): 401-407

Borlongan IG. 1992. Dietary requirement of milkfish (Chanos chanos Forsskal) juveniles for total aromatic
amino acids. AQUACULTURE 102 (4): 309-317

Borlongan IG. 1991. Arginine and threonine requirements of milkfish (Chanos chanos Forsskal) juveniles.
AQUACULTURE 93 (4): 313-322

Borlongan IG. 1990. Studies on the digestive lipases of milkfish, Chanos chanos. AQUACULTURE 89 (3-4):
315-325

Buri P. 1981. Pigmentation pattern in the early developmental stages of milkfish (Chanos chanos): A key for
larval identification. FISH. RES. J. PHILIPP. 6 (1): 51-55

(Forsskal) spawners. FISH. RES. J. PHILIPP. 1 (2): 76-85

Villaluz AC, Unggui A. 1983. Effects of temperatures on behavior, growth, development and survival in young milkfish, *Chanos chanos* (Forsskal). *AQUACULT.- BAMIDGEH* 42 (1) 10-17

Villegas CT, Bombeo T. 1982. Effects of increased stocking density and supplemental feeding on the production of milkfish fingerlings. *FISH. RES. J. PHILIPP.* 7 (2) 21-27

E-mail: library@aqd.seafdec.org.ph
aqdlib@i-loilo.com.ph
Fax: (63 33) 335 1008, 336 2891